Acta Cryst. (1995). C51, 1731-1732

Paraelastic Pb5Al3F19 at 370 K

SABINE SARRAUTE AND JEAN RAVEZ

Laboratoire de Chimie du Solide, CNRS, Université Bordeaux I, 351 cours de la libération, 33405 Talence, France

GEORGE BRAVIC AND DANIEL CHASSEAU

Laboratoire de Cristallographie et de Physique Cristalline, CNRS ERS 133, Université Bordeaux I, 33405 Talence CEDEX, France

SIDNEY C. ABRAHAMS

Physics Department, Southern Oregon State College, Ashland OR 97520, USA

(Received 24 October 1994; accepted 8 February 1995)

Abstract

The paraelastic phase of lead aluminium fluoride, $Pb_5Al_3F_{19}$, forms above a transition temperature of about 360 K. The structure contains corner-sharing chains of AlF₆ octahedra, individual AlF₆ octahedra, individual F⁻ ions and Pb²⁺ ions. Both sets of independent AlF₆ octahedra are slightly distorted, with Al— F distances of 1.79 (3) and 1.80 (2) Å. The transition from the ferroelastic phase is weakly first order [Ravez, Andriamampianina, Simon, Rabardel, Ihringer & Abrahams (1994). J. Appl. Cryst. **27**, 362–368].

Comment

Pb₅Al₃F₁₉ has been reported to undergo three phase transitions on cooling from 400 to 80 K (Ravez, Andriamampianina, Simon, Rabardel, Ihringer & Abrahams, 1994). The structure of the antiferroelectric phase with space group P4/n at room temperature, together with structural changes that occur at the transition from the ferroelectric phase with space group I4cm, have been described previously (Andriamampianina, Gravereau, Ravez & Abrahams, 1994).

The phase-transition sequence in $Pb_5Al_3F_{19}$ is the following (with transition temperatures, on cooling):

ferroelectric $\xleftarrow{120 \text{ K}}$ antiferroelectric $\xleftarrow{305 \text{ K}}$ ferroelastic $\xleftarrow{360 \text{ K}}$ paraelastic

X-ray diffraction measurements have been made on a crystal, prepared by Ravez, Andriamampianina & Abrahams (1994), in the paraelastic phase at 370 K, using a heated flow of dry nitrogen gas. Absorption correction error was minimized by grinding the crystal to a sphere. The symmetry of the intensity distribution

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved and the diffraction conditions h + k + l = 2n lead to a choice of space groups 14, $I\overline{4}$ or I4/m.

Neither the pyroelectric p_3 nor the piezoelectric d_{33} coefficients have measurable magnitudes, suggesting that the point group is centrosymmetric. The two independent Al atoms occupy AlF₆ octahedra and the Pb atoms occupy tunnels of 2.5 Å radii.

Fig. 1. Projection of the paraelastic phase of Pb₅Al₃F₁₉ along the c axis, with AlF₆ octahedra shown shaded. The larger filled circles represent Pb and the smaller open circles F8 atoms (see Table 1).

Fig. 2. Projection of the paraelastic phase of Pb₅Al₃F₁₉ along the b axis, with AlF₆ octahedra shown shaded. The larger filled circles represent Pb and the smaller open circles F8 atoms (see Table 1).

Experimental

The crystal was prepared by melting and slow cooling (Ravez, Andriamampianina & Abrahams, 1994). The density D_m was measured by flotation.

Crystal data

Pb5Al3F19	Mo $K\alpha$ radiation
$M_r = 1477.89$	$\lambda = 0.71073 \text{ Å}$
Tetragonal	Cell parameters from 25
4/m	reflections
i = 14.285(7) Å	$\theta = 10-26^{\circ}$
r = 7.227 (3) Å	$\mu = 56.4 \text{ mm}^{-1}$

Acta Crystallographica Section C ISSN 0108-2701 ©1995

Pb₅Al₃F₁₉

$V = 1475(3) \text{ Å}^3$	T = 370 K
Z = 4	Sphere
$D_{r} = 6.66 \text{ Mg m}^{-3}$	0.3 mm (radius)
$D_m = 6.66 \text{ Mg m}^{-3}$	Colourless

Data collection

Enraf–Nonius CAD-4	$R_{\rm int} = 0.065$
diffractometer	$\theta_{\rm max} = 30^{\circ}$
ω/θ scans	$h = -20 \rightarrow 20$
Absorption correction:	$k = -20 \rightarrow 20$
by spherical model	$l=0 \rightarrow 10$
$T_{\rm min} = 0.0009, T_{\rm max} =$	3 standard reflections
0.0185	monitored every 200
5787 measured reflections	reflections
1715 independent reflections	intensity decay: <4%
1314 observed reflections	
$[I > 3\sigma(I)]$	

Refinement

Refinement on F	$(\Delta/\sigma)_{\rm max} = 0.01$
R = 0.053	$\Delta \rho_{\rm max} = 5 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.058	$\Delta \rho_{\rm min} = -6 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.12	Extinction correction: none
1115 reflections	Atomic scattering factors
52 parameters	from Cromer & Waber
$w = (weight)[1 - (\Delta F/6\sigma^2(F))]^2$	(1974)

 Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	y	z	U_{eq}
Pb1	0.08474 (7)	-0.23970 (6)	0	0.018 (1)
Pb2	-0.06116 (6)	-0.21768 (5)	1/2	0.013 (2)
Pb3	0	1/2	1/4	0.072 (2)
A11	0.1581 (4)	0.3255 (4)	0	0.012 (4)
Al2	0	0	0.2460(1)	0.012 (4)
F1	0	0	0	0.038 (5)
F2	0	0	1/2	0.038 (5)
F3	0.3854 (9)	0.4500 (8)	0.2460 (2)	0.038 (5)
F4	0.2001 (9)	0.4076 (9)	0.1730 (2)	0.038 (5)
F5	0.3921 (9)	0.2494 (9)	0.6700 (2)	0.038 (5)
F6	0.2630 (10)	0.2610 (10)	0	0.038 (5)
F7	0.4530 (10)	0.1120 (10)	1/2	0.038 (5)
F8	0.4170 (10)	0.1250 (10)	0	0.038 (5)

Table 2. Selected geometric parameters (Å, °)

Pb1···F4 ⁱ	2.52(1)	Al1F4 ^{xi}	1.82(1)
Pb1···F4 ⁱⁱ	2.52(1)	Al1—F5 ^{vii}	1.78 (1)
Pb1···F6 ⁱⁱⁱ	2.54 (2)	Al1—F5 ^{xii}	1.78 (1)
Pb2···F5 ^{iv}	2.52 (1)	Al1F6	1.75 (2)
$Pb2 \cdot \cdot \cdot F5^{v}$	2.52 (1)	All—F7 ^{vii}	1.81 (2)
Pb2···F6 ^{vi}	2.54 (2)	A12-F1	1.777 (8)
Pb2···F8 ^{vi}	2.27 (2)	Al2—F2	1.836 (8)
Ph3···F7 ^{vii}	2.51 (1)	Al2—F3 ^{vii}	1.79(1)
Pb3···F7 ^{viii}	2.51 (1)	Al2—F3 ^{xiii}	1.79(1)
Ph3···F7 ^{ix}	2.51 (1)	Al2-F3 ^{xiv}	1.79(1)
Pb3···F7 ^x	2.51 (1)	A12—F3 ⁱ	1.79(1)
All—F4	1.82(1)		
F4 ⁱ ···Pb1···F4 ⁱⁱ	139.7 (6)	F4—Al1—F5 ^{xii}	92.7 (6)
F4 ⁱⁱ ···Pb1···F6 ⁱⁱⁱ	85.0 (3)	F5 ^{xü} —A11—F5 ^{vü}	87.2 (9)
$F5^{v} \cdot \cdot \cdot Pb2 \cdot \cdot \cdot F5^{iv}$	142.2 (6)	F4-A11-F6	93.3 (6)
$F5^{v} \cdot \cdot \cdot Pb2 \cdot \cdot \cdot F6^{vi}$	73.4 (3)	F4—A11—F7 ^{vii}	88.4 (6)
F5 ^v ···Pb2···F8 ^{vi}	77.2 (6)	F5 ^{vii} —Al1—F7 ^{vii}	86.8 (6)
F6 ^{vi} ···Pb2···F8 ^{vi}	75.2 (6)	F6—Al1—F7 ^{xii}	177.7 (9)
F7 ^{vii} ···Pb3···F7 ^{viii}	87.9 (6)	F1Al2F2	179.99
F7 ^{ix} ···Pb3···F7 ^{viii}	121.2 (3)	F1-Al2-F3 ^{vii}	92.0 (5)
F4-A11 ^{xi} -F4 ^{xi}	87.0 (8)	F3 ⁱ —Al2—F3 ^{vii}	89.93 (3)
F4-All-F5 ^{vii}	175.1 (7)	F3xiii-Al2-F3vii	176.1 (10)

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved

Symmetry codes: (i) $\frac{1}{2} - y, x - \frac{1}{2}, \frac{1}{2} - z$; (ii) $\frac{1}{2} - y, x - \frac{1}{2}, z - \frac{1}{2}$; (iii) y, -x, -z; (iv) $x - \frac{1}{2}, y - \frac{1}{2}, \frac{3}{2} - z$; (v) $x - \frac{1}{2}, y - \frac{1}{2}, z - \frac{1}{2}$; (vi) $x - \frac{1}{2}, y - \frac{1}{2}, \frac{1}{2} + z$; (vii) $\frac{1}{2} - x, \frac{1}{2} - y, \frac{1}{2} - z$; (viii) $x - \frac{1}{2}, \frac{1}{2} + y, \frac{1}{2} - z$; (ix) -y, x, z; (x) y, 1 - x, 1 - z; (xi) x, y, -z; (xii) $\frac{1}{2} - x, \frac{1}{2} - y, z - \frac{1}{2}$; (xiii) $x - \frac{1}{2}, y - \frac{1}{2}, \frac{1}{2} - z$; (xiv) $y - \frac{1}{2}, \frac{1}{2} - z$.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: local program (unpublished). Program(s) used to refine structure: CRYSTALS (Watkin, Carruthers & Betteridge, 1985).

The authors wish to thank R. Von der Mühll for piezoelectric and pyroelectric tests and D. J. Watkin for providing the refinement program.

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: DU1109). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Andriamampianina, V., Gravereau, P., Ravez, J. & Abrahams, S. C. (1994). Acta Cryst. B50, 135-141.
- Cromer, D. T. & Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2A. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Ravez, J., Andriamampianina, V. & Abrahams, S. C. (1994). Ferroelectrics, 158, 133-137.
- Ravez, J., Andriamampianina, V., Simon, A., Rabardel, L., Ihringer, J. & Abrahams, S. C. (1994). J. Appl. Cryst. 27, 362–368.
- Watkin, D. J., Carruthers, J. R. & Betteridge, P. W. (1985). CRYSTALS User Guide. Chemical Crystallography Laboratory, Univ. of Oxford, England.

Acta Cryst. (1995). C51, 1732-1735

Octachlorosilasesquioxane, Cl₈Si₈O₁₂

KARL WILHELM TÖRNROOS

Structural Chemistry, Stockholm University, 106 91 Stockholm, Sweden

GION CALZAFERRI AND ROMAN IMHOF

Institute for Inorganic and Physical Chemistry, University of Bern, Freiestrasse 3, CH-3000 Bern 9, Switzerland

(Received 18 December 1994; accepted 27 March 1995)

Abstract

The structure of $Cl_8Si_8O_{12}$ is compared with those of the isostructural compounds $H_8Si_8O_{12}$ and $(CH_3)_8Si_8O_{12}$. The geometric deformations in $Cl_8Si_8O_{12}$ seem to